Preparation of ¹⁸F-labeled aromatic amino acids by copper-mediated radiofluorination

Daniel J. Modemann¹, Boris Zlatopolskiy², Bernd Neumaier^{1,2} and Johannes Ermert¹

¹ Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5, Nuclear Chemistry, Germany

² University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Germany

Objectives:

- ¹⁸F-Labeled aromatic amino acids exhibit high potential for diagnostic applications using PET.
- Lack of convenient preparation methods.

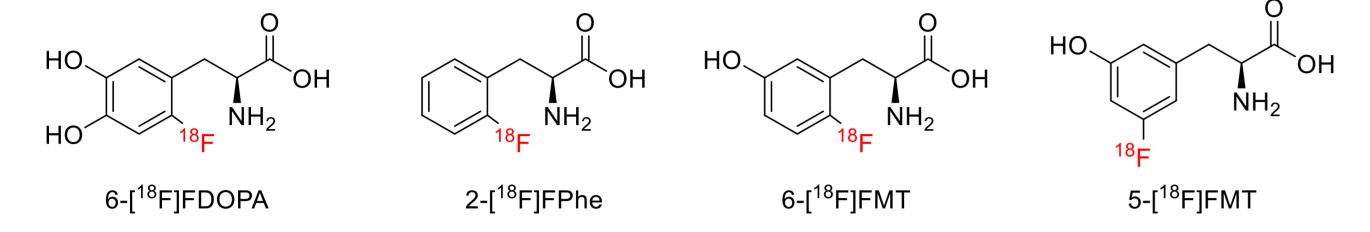


Fig. 1: Structures of studied ¹⁸F-labeled aromatic amino acids prepared within this study

Aim: Development of a practical procedure for the preparation of ¹⁸F-labeled aromatic amino acids on a preparative scale.

Methods:

> Synthesis of pinacol boronate ester (Bpin) precursors synthesized by Miyaura borylation.

$$X_1$$
 X_2 X_1 X_2 X_3 X_4 X_4 X_5 X_5 X_5 X_4 X_5 X_5

Fig. 2: Synthesis of Bpin precursors for $6-[^{18}F]FDOPA$ 1, $2-[^{18}F]FPhe$, 5- and $6-[^{18}F]FMT$; conditions: a) (for R=tBu) AcOtBu, $HClO_4$. b) Boc_2O , c) BTI, I_2 in DCM d) B_2pin_2 , $Pd(dppf)Cl_2$, KOAc in DMF, e) 4-DMAP, Boc_2O in MeCN.

Bpin precursor for 6-[18F]FDOPA: $X_{1,2} = OH$, $Y_{1,2} = OBoc$, $Z_1 = H$, $Z_2 = Bpin$, R = tBu, R' = Boc; Bpin precursor for 2-[18F]FPhe: $X_{1,2} = H$, $Y_{1,2} = H$, $Z_1 = H$, $Z_2 = Bpin$, $Z_3 = Bpin$, $Z_4 = Bpin$, $Z_5 = Bpin$, $Z_7 = Bpin$, $Z_8 = Bpin$, $Z_9 = Bp$

Bpin precursor for 5-[^{18}F]FMT: $X_1 = OH$, $X_2 = H$, $Y_1 = OBoc$, $Y_2 = H$, $Z_1 = Bpin$, $Z_2 = H$, $R = CH_{3, R'} = H$.

- ➤ Alcohol-enhanced Cu-mediated radiofluorination with Cu(Py)₄ (OTf)₂:^{1,2}
 - $[^{18}F]F^{-}$ fixed on a QMA-cartridge and eluted with Et_4NHCO_3 (1 mg) in MeOH with subsequent MeOH evaporation.
 - Addition of precursor (10 μ mol) and Cu(Py)₄ (OTf)₂ (20 μ mol) in a mixture of DMA (500 μ L) and n-BuOH (250 μ L).
 - Heating to 110 °C for 20 min.
 - Hydrolysis with HCl (10.8 mol, 0.8 mL) 80 °C for 10 min.
 - HPLC-separation: Phenomenex Hydro-RP 4 μm 80 Å (4.6x250mm) column with 2 % EtOH 2-[¹⁸F]FPhe and 5-[¹⁸F]FMT) or 1 % EtOH: 6-[¹⁸F]FMT (1 mL/min); Hamilton PRP-C18 (10x250 mm); 6-[¹⁸F]FDOPA: 0.05 M HCl_(aq) (3 mL/min).

Results and Discussion:

- ➤ Labeling precursors prepared in total yields of 5–17 % in 3–5 steps.
- N,N-Boc precursors of 6-[18F]FDOPA, 2-[18F]FPhe and 6-[18F]FMT enabled more efficient radiosynthesis of the corresponding 18F-labeled tracers in contrast to mono-Boc protected ones.
- ➤ During the copper-mediated ¹⁸F-for-Bpin radiofluorination partial deprotection (loss of one Boc-group) (see Fig. 3).

- The corresponding ¹⁸F-labeled aromatic amino acids were obtained in 40–66 % RCY within 110 to 120 min (cf. Table 1).
- Enantiomeric excess (ee) of 2-[18 F]FPhe, 6-[18 F]FDOPA and 6-[18 F]FMT > 94 %.

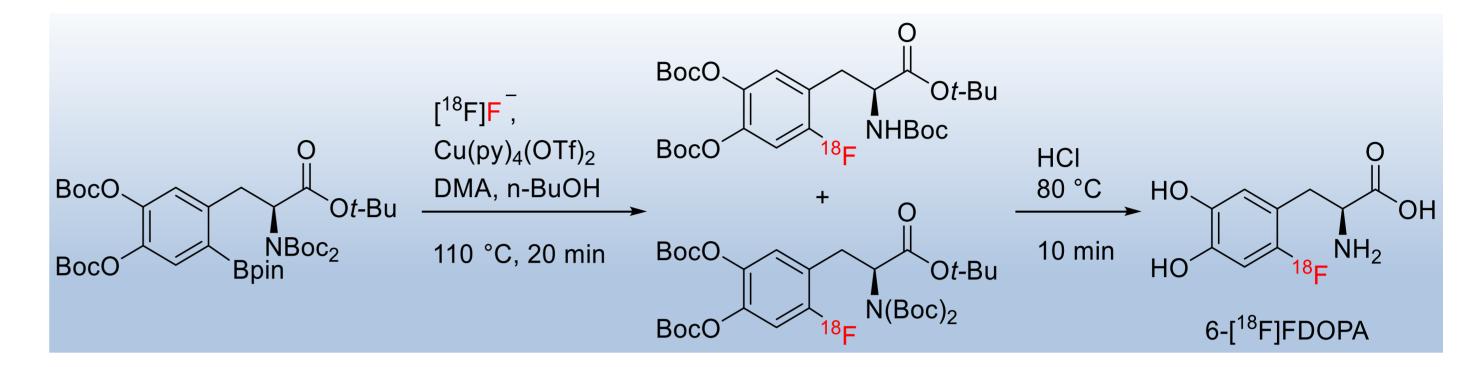


Fig. 3: Preparation of 6-[18F]FDOPA.

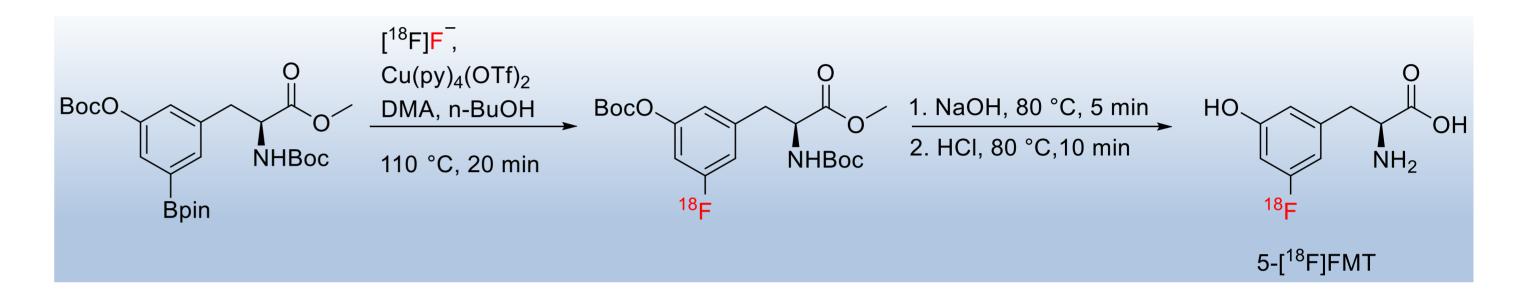


Fig. 4: Preparation of 5-[18F]FMT.

• Successful transfer of the novel method into an automated synthesis module for the production of 2-[18F]FPhe, 5- and 6-[18F]FMT in 31–50 % RCY (see Tab. 1).

Tab. 1: Summary of results

Precursor	RCY	RCY	Molar activity	ee
→Tracer	(manually)	(automated)		
BocO $N(Boc)_2$ $\rightarrow 6-[^{18}F]FDOPA$	40 ± 4 % 110 min (n = 3)	n. d.	37 GBq/μmol	> 99 %
$ \begin{array}{c} O \\ N(Boc)_2 \end{array} $ $ \Rightarrow 2-[^{18}F]Fphe $	57 ± 6 % 110 min (n = 3)	$31 \pm 6 \%$ 110 min $(n = 3)$	185 GBq/μmol	> 99 %
BocO $N(Boc)_2$ $\rightarrow 6-[^{18}F]FMT$	48 ± 5 % 110 min (n = 3)	41 ± 8 % 110 min (n = 4)	251 GBq/μmol	> 99 %
BocO NHBoc Bpin → 5-[18F]FMT	66 ± 1 % 120 min (n = 3)	50 ± 2 % 120 min (n = 3)	121 GBq/μmol	94 %

Summary:

Convenient production of ¹⁸F-labeld aromatic amino acids using alcohol enhanced Cu-mediated radiofluorination enabling the production of 6-[¹⁸F]FDOPA, 2-[¹⁸F]FPhe, 6-[¹⁸F]FMT and 5-[¹⁸F]FMT, in high amounts, sufficient for preclinical and clinical applications.

References:

- [1] J. Zischler, N. Kolks, D. Modemann, B. Neumaier, B. D. Zlatopolskiy, *Chem. Eur. J.* **2017**, *23*, 3251-3256..
- [2] S. Preshlock, M. Tredwell, V. Gouverneur, Chem. Rev. 2016, 116, 719-766.

Funding Information

This work was supported by DFG Grant ZL 65/1-1.